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Figure 1. ORCA includes a spectrum of taxonomic marine species regarding both diversity and coverage. The detailed
instance-level annotations (BBOX and dense captions enriched with domain-specific knowledge) enable object recognition
and further comprehension for archiving the marine species, also supporting various biological applications.

Abstract
Marine visual understanding is essential for moni-
toring and protecting marine ecosystems, enabling
automatic and scalable biological surveys. How-
ever, progress is hindered by limited training data
and the lack of a systematic task formulation that
aligns domain-specific marine challenges with well-
defined computer vision tasks, thereby limiting ef-
fective model application. To address this gap,
we present ORCA, a multi-modal benchmark for
marine research comprising 14,647 images from
478 species, with 42,217 bounding box annota-
tions and 22,321 expert-verified instance captions.

*Corresponding author: zhengziqiang1@gmail.com

The dataset provides fine-grained visual and tex-
tual annotations that capture morphology-oriented
attributes across diverse marine species. To cat-
alyze methodological advances, we evaluate 18
state-of-the-art models on three tasks: object de-
tection (closed-set and open-vocabulary), instance
captioning, and visual grounding. Results highlight
key challenges, including species diversity, morpho-
logical overlap, and specialized domain demands,
underscoring the difficulty of marine understanding.
ORCA thus establishes a comprehensive benchmark
to advance research in marine domain.

https://orca.hkustvgd.com


1. Introduction

The ocean, with a vast coverage on the surface
of our blue planet, remains a mysterious abyssal
region to the best of our knowledge. Advanc-
ing knowledge of marine ecosystems is critical
for oceanography [12, 80], sustainable resource
management [14, 48], and biodiversity conserva-
tion [37, 43]. Considerable efforts have been de-
voted to biological surveys and habitat monitor-
ing [3, 67, 71, 78]. To enhance the scalability and
efficiency of in-situ monitoring, researchers are in-
creasingly leveraging computer vision techniques
to reduce manual data processing, including image
classification [9, 62, 79], object detection [73, 76],
and vision–language modeling [27].

Despite the remarkable success enabled by
powerful network backbones and domain-specific
datasets, significant challenges remain, which can
be broadly categorized into issues of training data
and task formulation. Current marine datasets are
often restricted to a small set of predefined cat-
egories (e.g., seven semantic classes in the UIIS
dataset [34]) and are typically collected from lim-
ited geographic regions. Such constraints hinder
both taxonomic diversity and ecological coverage,
limiting the recognition of a broad range of ma-
rine species. Even fine-grained datasets with larger
category sets, such as [88, 89], remain primarily
focused on fish monitoring.

Regarding task formulation, current task defini-
tions remain insufficient for domain requirements.
Image-level classification [9, 62, 79] may lead to in-
consistency between coarse category annotations
and image content, which often contains multi-
ple species in a wild environment. Object detec-
tion [73, 76] is limited by a narrow set of categories.
Furthermore, category labels alone cannot capture
key biological traits that are essential for ecological
monitoring. For image captioning, although recent
vision–language models (VLMs) [29, 31, 70, 82] are
evolving rapidly, their outputs are typically coarse
and lack the granularity and domain-specific knowl-
edge needed for description.

To address these challenges, we introduce
ORCA, the first multimodel dataset explicitly de-
signed for marine research. ORCA offers 1) broad
taxonomic coverage spanning 478 species and 670
common-name categories; 2) instance-level anno-
tations enabling both object detection and ground-
ing; and 3) biology-oriented captions with diag-
nostic traits, appearances, behaviors, and habitats,
all validated by marine biologists. The dataset com-
prises 14,647 images with 42,217 bounding boxes,
each labeled with both scientific and common names
to support diverse usage scenarios. In total, ORCA
provides 22,321 expertly verified instance–caption
pairs, ensuring terminological accuracy and scien-
tific relevance.

ORCA supports a range of vision-language tasks,
including closed-set and open-vocabulary detec-
tion, instance-level captioning, and visual ground-
ing. While detection and grounding primarily assess
a model’s ability to recognize and localize marine
species, ORCA further introduces three evaluation
settings: Class-Level, Intra-Class, and Inter-Class,
to systematically examine how taxonomic hierar-
chies influence those abilities under the condition of
morphological overlapping, where closely related
species exhibit highly similar traits, thereby compli-
cating species identification. Beyond spatial local-
ization, the captioning and grounding components
of ORCA facilitate fine-grained alignment between
visual observations and linguistic descriptions. This
dual emphasis not only enhances object-level refer-
encing but also supports the structured, biologically
meaningful archiving of marine survey data.

We have benchmarked 18 state-of-the-art algo-
rithms across the aforementioned tasks. In summary,
our contributions can be outlined as follows:
• We present ORCA, the first large-scale marine

dataset with broad taxonomic coverage, bounding
box annotations, and rich instance-level captions.

• We conduct an evaluation of 18 models, showing
that fine-tuning on ORCA improves performance
on localization and captioning tasks.

• We demonstrate that dense, domain-specific cap-
tions enable accurate object referencing and re-
solve challenges posed by morphological overlap,
where visual cues are ambiguous and misleading.



• We show that existing captioning models struggle
with instance-level descriptions, often producing
coarse, image-level captions instead of region-
specific outputs.

2. Related Work
Existing marine research. Marine species exhibit
high diversity in pose, appearance, and pattern. Ro-
bust marine visual understanding can leverage re-
cent algorithms [19, 33, 84, 85] to advance research,
conservation, and industry. Several datasets have
been introduced, including MAS3K [32, 33], Wild-
Fish [88], WildFish++ [89], and SUIM [21], which
improve recognition of marine organisms. However,
most of them provide only a limited set of predefined
categories without detailed captions, restricting their
utility for fine-grained marine analysis and large-
scale scientific databases. ORCA addresses this
gap by introducing a large-scale dataset covering
a broad range of marine species with high-quality
annotations (bounding boxes and captions).
Object Detection. Object detection is a core com-
puter vision task [36, 55, 56], involving simulta-
neous object localization and classification. Con-
ventional one-stage [15, 42, 54] and two-stage [17,
55, 56] detectors rely on fixed predefined cate-
gory sets, which limit their applicability in ma-
rine domains, where species diversity varies greatly
across regions. Open-vocabulary object detection
(OVOD) [24, 66, 72, 75] addresses this challenge
by extending detection to unseen categories. OVOD
commonly leverages large-scale vision–language
pre-training [51] to align visual regions with textual
concepts; for instance, RegionCLIP [24] enhances
generalization by matching regional features with
natural language. These properties make OVOD
particularly promising in marine applications, with
the ability to recognize novel and diverse species.
Vision–Language Understanding. VLMs [1, 29,
30, 39, 40, 63, 82, 83, 87] have made substantial
progress, driven by large-scale datasets such as Vi-
sual Genome [26], VizWiz [16], RefCOCO [22],
and Objects365 [59]. These models combine visual
encoders [13] with large language models [45, 46],
trained on massive image–text corpora. CLIP [51]
demonstrated strong zero-shot recognition, while

BLIP [29, 30] advanced multimodal pre-training
through frozen encoder–decoder architectures. Col-
lectively, these works provide the foundation for
tasks such as image captioning and grounding,
which are critical for automatically documenting
and archiving marine observations and discoveries.
However, most existing datasets focus on terrestrial
objects with very limited marine coverage, restrict-
ing VLM effectiveness in this domain. Furthermore,
current VLMs struggle with fine-grained, region-
level instance understanding essential for marine-
specific tasks. To address this gap, ORCA provides
high-quality textual annotations to better enable
VLM applications in marine research.

3. Orca Construction
We illustrate the construction protocol of ORCA in
Figure 2 and subsequently summarize its character-
istics and statistics.

3.1. Dataset Construction
Data collection. The process began by compil-
ing a target list of marine taxonomic categories.
GPT-4 was employed to generate canonical com-
mon names (e.g., seahorse), providing a proxy for
vernacular terms most widely used by the public
and thereby guiding more effective image searches.
Candidate images were then sourced from Google
Images, Flickr, and iNaturalist, with URLs retained
for copyright attribution. All images underwent
manual inspection to remove duplicates and mis-
classified entries, ensuring both quality and diver-
sity. Each common name was subsequently mapped
to its corresponding taxon in the World Register
of Marine Species (WoRMS) [2]. Cases where a
common name referred to an entire genus or higher
taxonomic rank (e.g., “unicorn fish,” encompassing
the genus Naso) were excluded to avoid ambiguity.
Bounding-box annotation. We combined the Seg-
ment Anything Model (SAM) [25] with human-
supplied point prompts to delineate object masks,
which were subsequently converted to axis-aligned
bounding boxes. Given the amorphous morphol-
ogy of marine organisms, we specifically verified
that each box fully encompassed the target instance,
including translucent fins and slender appendages.



Figure 2. Overview of ORCA construction process. It begins with image collection, followed by bounding box annotation
and caption generation for each box. Domain experts then verify all of them and refine at least one caption per image.

Figure 3. ORCA offers a balanced and sufficient amount
of visual and textual annotations, compared to general
and domain-specific datasets.

Caption generation. Existing datasets [57] mainly
utilized alt-texts to formulate the image-text pairs.
However, the texts suffer from limited information
(short captions), misalignment with visual contents,
and deviation from domain-specific requirements.
Instead, we generate rich instance-level descriptions.
For every large bounding box (> 1,024 pixels), the
cropped region is passed to MarineGPT [82] to pro-
duce captions tailored to the marine research.

3.2. Dataset Statistic and Comparison
Caption refinement. The generated caption is then
passed to domain experts for verification and re-
finement along four dimensions: 1) Unique mor-
phological traits, such as color, shape, injuries, etc;

Dataset
Image
Count

Visual
Annotation

Lingistic
Annotation

Category
Count

Taxonomy
Supported

DUO [38] 7,782 BBOX - 4 ✗
SUIM [21] 1,525 Mask - 8 ✗
MAS3K [32] 3,103 Mask - 37 ✗
UIIS [34] 4,628 Mask - 7 ✗
SEAMPD21 [5] 28,328 BBOX - 130 ✗
Wildfish [88] 54,459 Category - 1,000 ✗
FishNet [23] 94,532 BBOX - 17,357 ✓
Wildfish++ [89] 2,348 Category Image-Level 2,348 ✓

Redcaps [11] 12,011,121 - Image-Level - ✗
Pascal Sentences [53] 1,000 Category Image-Level 20 ✗
SBU Captions [47] 1,000,000 - Image-Level - ✗
iNat2017 [20] 859,000 BBOX - 5,089 ✓

Orca (Ours) 14,645 BBOX Instance-Level 670 ✓

Table 1. Statistic comparison with other general and
domain-specific datasets.

2) Spatial context (absolute and relative positions);
3) Environmental background; and 4) Behavioral
cues (individual or inter-species interactions). To
enhance labeling efficiency, experts are required
to refine at least one caption per image. The re-
maining are labeled positive if error-free or negative
otherwise. We intentionally retained the negative
captions, proving harder negatives than prior work
that substitutes random nouns [74, 81]. Finally,
ORCA contains 34,752 captions (with 12,873 re-
fined, 9,448 positive and 12,431 negative captions).
We further codify 11 error categories responsible
for negative labels, where details are provided in the
supplementary material.

Our dataset introduces domain-specific features
that distinguish it from both general-purpose and



Figure 4. Caption tokens length for general datasets and
domain-specific datasets. The white circle represents the
mean caption length. Outliers have been filtered out.

(a) Pascal Sent. (b) Redcaps (c) SBU Captions

(d) ORCA (Ours) (e) Wildfish++

Figure 5. t-SNE of the vocabulary used in general datasets
and domain-specific datasets). Pascal Sent. stand for
Pascal Sentence for better visualization.

existing marine datasets: 1) it provides comprehen-
sive instance-level annotations, with each bound-
ing box larger than 1,024 pixels paired with a cap-
tion and mapped to marine taxonomic categories,
as shown in Table 1; 2) it ensures balanced vi-
sual–textual supervision, offering comparable scales
across both modalities to support a wide range of
vision–language tasks, unlike other datasets that em-
phasis on one modality, as illustrated in Figure 3;
and 3) it includes dense and diverse captions for
each organism, yielding high caption density and
substantial vocabulary diversity, as shown in Fig-
ure 4 and Figure 5 respectively.

4. Experiments

We benchmark 18 existing SOTA models on ORCA
from three representative tasks, including object
detection (closed-set and open-vocabulary settings),
instance captioning, and visual grounding.

4.1. Object Detection
Experimental settings. We evaluate the capacity
of closed-set and open-vocabulary object detection
models to both localize and identify marine crea-
tures. It is notoriously challenging, even for expe-
rienced biologists, because of the morphological
overlap among species, where those belonging to
the same higher-level taxon often exhibit similar
physical characteristics. For OVOD, we devise three
settings: Class-Level, Intra-Class, and Inter-Class.
Class-Level. We group species at “Class” level in
the taxonomic hierarchy. Specifically, 670 vernac-
ular categories are consolidated into 33 Class-level
taxonomic categories, with 24 seen and 9 unseen
categories. Certain vernacular categories (e.g., Bry-
ozoa) correspond to higher taxonomic ranks (e.g.,
phylum) and are therefore excluded.
Intra-Class setting refines the task further by re-
quiring models to identify vernacular categories
within the aforementioned 33 Class-level taxonomic
groups. From these, we sample 555 vernacular cate-
gories as seen and 109 as unseen.
Inter-Class. We adopt a more granular approach
by sampling one vernacular category as unseen for
every four categories within each “Class”, while des-
ignating the remaining three vernacular categories
as seen. “Classes” with fewer than four categories
are excluded. As a result, this setup includes 482
seen and 161 unseen vernacular categories.
Close-set object detection. We mainly include 3
representative close-set object detection algorithms
(Faster-RCNN [55], YOLOX [15], and GridR-
CNN [44]) and report the mAP50 of 24 seen cat-
egories under three settings. Our implementation of
these models is based on MMDetection [6] using
the official experimental setting. Please note that
we do not evaluate these closed-set object detection
algorithms on the unseen categories.
OVOD. We evaluate the performance of 3 open-
vocabulary object detection algorithms (UniDetec-
tor [66], RegionCLIP [86], and DECOLA [7]). We
follow the official experimental setting and fine-
tune the model on our ORCA dataset. Particularly,
we adopt the single-dataset training strategy for
UniDetector [66] to continuously optimize it in an
end-to-end fashion. For DECOLA [7], we utilize



Method Seen Unseen
Class-level Intra-Class Inter-Class Class-level Intra-Class Inter-Class

FasterRCNN [55] 28.7 17.6 16.7 - - -
YOLOX [15] 27.5 21.7 21.0 - - -
GridRCNN [44] 32.7 28.1 28.6 - - -

UniDetector [66] 31.5 23.3 24.1 8.2 0.4 0.7
RegionCLIP [86] 39.8 34.1 29.8 12.2 6.2 0.4
DECOLA [7] 66.7 88.8 86.9 37.7 51.6 52.3

Table 2. Quantitative object detection results (mAP50) under close-set and open-vocabulary settings.

their best-performing model with Swin-B backbone
(phase 1) as the pre-trained model. We inherit the
language-conditioned detection training procedure
of DECOLA while keeping other configurations the
same. We report the quantitative result in Table 2
where mAP50 is computed.
Comparison and analysis. Detecting marine or-
ganisms poses significant challenges for general
object detection models. As summarized in Fig-
ure 6 and Table 2, while these models effectively
locate objects, they struggle with accurate classifi-
cation. We summarize two observations: 1) Mor-
phological overlap across species confuses models
for species identification, resulting in lower per-
formance for Intra- and Inter-Class compared to
Class-Level. 2) Relying solely on visual cues is
insufficient for species identification. Performance
in closed-set object detection (which relies exclu-
sively on visual features) is generally lower than
in open-vocabulary object detection (which incor-
porates both visual features and category labels).
DECOLA demonstrates a clear advantage in recog-
nizing fine-grained marine species. We attribute this
to its language-conditioned query selection strategy.

4.2. Instance Captioning
Experimental settings. We benchmark off-the-
shelf VLMs from two aspects: image-level and
region-level. The former image-level VLMs
(LLAVA [40], MiniGPT-4 [87], BLIP2 [31], and
InstructBLIP [8]) were optimized by image-level
captions and lacked the ability to understand spe-
cific object instances. We evaluate these image-level
VLMs based on the following user instruction: “de-
scribe the object in this figure”. The latter region-
level VLMs (GroundingLMM [52], GPT4RoI [77])
were optimized by paired image region prompts and

the corresponding instance captions. We provide
the BBOX annotation in the given text prompt fol-
lowing the experimental setting of [52, 77]. We
perform the evaluations based on expert-verified
instance captions to analyze their capability in de-
scribing marine instance objects. To quantitatively
measure the performance of various algorithms, we
adopt the widely used captioning metrics (includ-
ing CLIPScore, RefCLIPScore [18], CIDEr [65],
BLUE-4 [49], METEOR [4], and Rouge [35]) to
compute quantitative results in Table 3. Besides
the human-constructed instance captions proposed
in ORCA, we also construct a starting sentence to
include the category information for the selected ob-
ject instance: “This is a <Category Name>.”, where
the <Category Name> is the placeholder to compen-
sate for the scientific category-level information of
each instance. In this way, by penalizing generated
plausible but not domain-specific responses (e.g.,
“fish”, “animal”, and “mammal”), we encourage the
model to generate the scientific captions to satisfy
the domain requirements.
Implementation details. We perform the evalu-
ation only based on the released official models
provided by various algorithms on ORCA and our
experiments were conducted using an NVIDIA L20
GPU. For LLAVA [40], we choose its V1.5-7b
version for evaluation. The language model of
MiniGPT-4 [87] is set to LLaMA-2 [64]. As for
the GroundingLMM [52], we report the results of
the models fine-tuned on RefCOCOg dataset [22]
and Visual Genome (VG) dataset [26], respectively.
For MiniGPT-4 fine-tuning, we train it on 4 NVIDIA
A100-40GB for 5 epochs while other training pa-
rameters remain the same.
Comparison and analysis. Based on the results in
Table 3 and Figure 6, we summarize the following



Figure 6. Quantitative results of open-vocabulary object detection, visual grounding, and image captioning.

Method CLIPScore↑ RefCLIPScore↑ CIDEr↑ BLUE-4↑ METEOR↑ ROUGE↑

LLAVA [40] 73.78 72.27 4.93 8.77 7.70 20.76
MiniGPT-4 [87] 74.48 73.43 5.72 7.18 16.90 28.03
BLIP2 [31] 76.22 73.73 9.96 8.16 5.95 18.96
InstructBLIP [8] 76.60 75.25 12.09 13.94 7.40 21.31

GroundingLMM (RefCOCOg) [52] 73.04 70.97 4.37 4.39 4.60 16.37
GroundingLMM (VG) [52] 71.15 69.04 4.06 2.47 4.11 15.22
GPT4RoI [77] 71.28 68.71 3.53 2.81 4.07 15.08

Table 3. Results of various algorithms (image-level and region-level) on instance captioning.

observations: 1) The generic captioning model pre-
dominantly generates coarse phrases that are short
and lack domain-specific knowledge. This aligns
with the findings in Figure 4, where the training cap-
tion provided by the general dataset is also brief, in
terms of length. The models frequently use every-
day vocabulary, such as describing an object as “a
large fish” instead of the more specific term, “mar-
lin”. Additionally, the models are prone to mis-
classifying objects. 2) The models primarily pro-
duce image-level captions and struggle to capture
fine-grained features, such as morphology, color

patterns, and textures. This limitation highlights a
significant gap in the ability of general captioning
models to support marine-specific tasks effectively.
Fine-tuning MiniGPT-4 on ORCA further demon-
strates that domain-specific training enhances image
captioning performance. Additional details are pro-
vided in the supplementary material.

4.3. Visual Grounding
Experimental settings. We evaluate visual ground-
ing models under both zero-shot and fine-tuned
settings. Specifically, the expert-verified captions



Zero-shot
UnseenMethod Class-Level Intra-Class Inter-Class Class-Level Intra-Class Inter-Class

GroundingVLP [60] 0.5183 0.5148 0.518 0.5816 0.5543 0.5837
TransVG [10] 0.5191 0.5025 0.5048 0.5849 0.5492 0.5773
GroundingDino [41] 0.5674 0.5606 0.5853 0.6324 0.5868 0.6278
HiVG [69] 0.4751 0.4386 0.4471 0.5459 0.4743 0.5399
Dynamic-MDETR [61] 0.5261 0.5004 0.5092 0.5856 0.5484 0.5792
CLIP-VG [68] 0.5499 0.5357 0.5346 0.6281 0.5789 0.6233

Fine-tuned
Seen UnseenMethod Class-Level Intra-Class Inter-Class Class-Level Intra-Class Inter-Class

TransVG [10] 0.6294 0.7213 0.6401 0.6984 0.7854 0.7216
GroundingDino [41] 0.8114 0.8011 0.8077 0.8832 0.8554 0.8744
HiVG [69] 0.6602 0.731 0.7235 0.7373 0.7892 0.8176
Dynamic-MDETR [61] 0.7494 0.7166 0.7511 0.8223 0.7762 0.8176
CLIP-VG [68] 0.7724 0.6191 0.6603 0.8569 0.6711 0.7433

Table 4. Visual-grounding performance reported as top-1 bounding-box accuracy at an IoU threshold of 0.5.

from our dataset are used as queries. The algo-
rithms then predict a grounding box, and top-1 ac-
curacy is reported at an Intersection over Union
(IoU) threshold of 0.5. We select five models
(TransVG [10], GroundingDINO [41], HiVG [69],
Dynamic-MDETR [61], and CLIP-VG [68]) to as-
sess performance in both zero-shot and fine-tuned
scenarios. GroundVLP, [60] (with ALBEF [28] em-
ployed), a pipeline leveraging pretrained models, is
evaluated exclusively in the zero-shot setting.
Implementation details. To ensure fair compar-
isons, we adhere strictly to official configuration
files and evaluation scripts. For consistency with
the GroundingDINO evaluation, which permits only
one caption per image, we use the first annotation
of each image to construct the testing dataset. In the
zero-shot setting, we employ the publicly released
models pre-trained on Flickr30K Entities [50], Ob-
jects365 [58], ReferItGame [22], based on the set-
ting in the original paper accordingly.

For the fine-tuned setting, we retrain each model
on ORCA using the same architecture as zero-shot
setting and keep other hyperparameters the same.
Comparison and analysis. From Table 4, we sum-
marize two observations: 1) Detailed captions facil-
itate species identification in visual grounding tasks.
Unlike object detection, which suffers from signifi-
cant performance drops in both Intra-Class and Inter-
Class settings in Section 4.1, visual grounding tasks
demonstrate no notable performance decline, even
in the zero-shot setting. This underscores the im-
portance of detailed captions in improving model

robustness. 2) Fine-tuning on the ORCA yields
significant performance improvements regarding vi-
sual grounding, with top-1 accuracy increasing by at
least 10 percentage points for both seen and unseen
categories across all three settings. These results
indicate that while detailed captions enable general
models to perform reasonably well in unseen ma-
rine scenarios, domain-specific supervision provides
substantial additional gains.

5. Discussion and Conclusion
New benchmark. ORCA introduces a comprehen-
sive and diverse benchmark specifically curated for
marine research. Designed to advance the evalua-
tion of algorithms for marine visual understanding,
it encompasses a broad spectrum of marine species
across varied environments, offering a valuable plat-
form for testing and developing new models.
Limitation. Despite our efforts to include the most
representative marine species, the diversity of ma-
rine life far exceeds the current set of categories. We
plan to continually expand the dataset to incorporate
additional marine objects over time.
Conclusion. This work presents the first large-scale
marine dataset that supports both object recogni-
tion and detailed visual understanding. It enables
multiple tasks, including object detection, instance
captioning, and visual grounding. Our comprehen-
sive evaluation highlights the strengths and limita-
tions of both general-purpose and domain-specific
algorithms, providing valuable insights for future
research in marine applications.
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